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of directed percolation, while for 0,s,1, the transition becomes first order. This criterion is then applied to
discuss critical properties of various models of nonequilibrium wetting.
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I. INTRODUCTION

Many recent theoretical studies have shown that the
growth process of a solid phase on a substrate can undergo a
variety of nonequilibrium transitions. They are analogous to
equilibrium wetting phenomena in which liquid boundary
layers exhibit critical behavior in the vicinity of the liquid-
gas coexistence line. Such growth processes can be effec-
tively modelled by defining a suitable evolution rule for the
profile sinterfaced, corresponding to the boundary of the solid
layer. Several growth models which do not obey detailed
balance and evolve towards stationary non-equilibrium states
have been studied in the past. In many cases, by varying a
control parameter, they exhibit a transition from a regime
where the solid phase remains pinned to the substrate to a
regime where an unbounded growth sets inf1–8g. This de-
pinning of an interface may be considered as nonequilibrium
wetting, in analogy with its equilibrium counterpart. In some
models the character of the depinning transition changes, de-
pending on the dynamical rates which control the interface
evolution. Numerical studies in 1+1 dimensions allowed to
identify both first- and second-order phase transitions, those
of the latter type falling into two universality classes: di-
rected percolationsDPd f9g and multiplicative noisesMNd
f10g. Since the transition always occurs towards anirrevers-
ibly depinned phase, it is quite natural to draw an analogy
with dynamical processes characterized by an absorbing
state.

Recently, it has also been shown that such a depinning
transition can be related to thesynchronizationphase transi-
tion in spatially extended chaotic systemsf11,12g. In this
latter framework, two different replicae of the same dynami-
cal system are coupled one to each other, either determinis-
tically f12g or by the addition of the same realization of a
spatiotemporal stochastic noise. Upon increasing the cou-
pling parameter, the system undergoes a nonequilibrium
phase transition between an unsynchronized phase and a
completely synchronized one, characterized by a vanishing
local difference between the twosinitially d different replica.
Since two completely synchronized replica of the same sys-

tem are bound to remain identical one with respect to each
other at all future times, we can conclude that the completely
synchronized phase is absorbing for system dynamics, thus
playng the role of the irreversibly depinned phase in non-
equilibrium wetting processes. Interestingly, both numerical
analyses of coupled map lattices systemsf11,12g and analyti-
cal argumentsf12,13g predict the synchronization transition
to exhibit a critical behavior, which belongs either to the MN
or to the DP universality class.

A schematic typical configuration of an interface bound to
a substrate is depicted in Fig. 1. It is composed of detached
domains separated by pinned segments. The dynamics of the
interface is such that each detached domain may either
shrink or expand from its edges; new domains may be cre-
ated by the unbinding process of bound sites, and two or
more detached domains may merge into a single larger one.
In principle, a segment internal to a detached domain may
bind back to the substrate. However, in some physical con-
ditions such processes are virtually suppressed. This occurs
when the unbound interface moves on the average away
from the substrate, while it is held bound to the substrate by
some short range attractive interaction. In fact, the farther is
a segment from the edge of a domain, the larger is the height
of the inferface and, accordingly, the more unlikely the pos-
sibility to bind back to the substrate. In this case, the dynam-
ics of the interface may very well be described by a contact
process in which the active sites correspond to those bound
to the substrate. The resulting depinning transition is thus
expected to belong to the DP universality class. The obser-
vation of DP depinning transition in some modelsf1,8,14g
confirms the validity of the above arguments. In some cases

FIG. 1. Schematic configuration of an interface bound to a sub-
strate. Within the DP framework bound sites may be considered as
active while islands of depinned sites are inactive.
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a possible crossover to a first order transition has been sug-
gested, when the attractive interaction between the interface
and the substrate is increased. While in certain regions of the
phase diagram the existence of a first order transition has
been clearly demonstrated, in other regions it has only been
tentatively suggested, based on numerical simulations of fi-
nite systemsf3,14g. Due to the strict connection between
wetting and complete synchronization non-equilibrium phase
transitions, a more accurate understanding of this part of the
wetting phase diagram is highly desirable not only from the
theoretical point of view, but also in view of possible experi-
mental realizations of the MN and/or the DP universality
classes. In our opinion, in fact, the synchronization transition
in spatially extended systems represents the most promising
framework in which one can look for MN critical properties,
if not for DP ones, which seem to require a highly nonlinear
local dynamics governing a spatially extended system
f11,13g. It is worth stressing that both these classes are still
eluding a clear experimental evidence, possibly due to the
presence of quenched disorder in experimental realizations
and, in the case of DP phase transitions, to seemingly un-
avoidable small fluctuations of thessupposedlyd absorbing
statef9g. Interesting candidates for experiments include the
photosensitive Belousov-ZhabotinskysBZd reaction, which
is known to exhibit complex spatiotemporal dynamicsf15g
and semiconductor lasers with time-delayed optical feed-
back. In Ref.f16g it has been shown that such delayed sys-
tems can be interpreted in terms of a suitable spatiotemporal
dynamics, where the effective system size is given by the
ratio between the delay time and the typical fast time scale of
the system. Notice that, in principle, the use of semiconduc-
tor lasers with time-delayed feedback allows for obtaining
rapidly a large data set, which is basically free of quenched
noise effects. These features provide the possibility of a
proper statistical description of the synchronization transi-
tion. Finally, the role played by small fluctuations near the
completely synchronized phase and their exponential sup-
pression in the case of synchronization DP has been dis-
cussed in Ref.f13g.

In the present paper we introduce a framework within
which the crossover from DP to first order transition may be
examined. This framework is then applied to two previously
introduced models of nonequilibrium wetting.

Preliminary simulations performed in the pinned phase
close to a seemingly first-order wetting transition have re-
vealed that the activation rate at the border of a depinned
island depends on the island length. This suggests that the
dynamics of a fluctuating interface leads to an effective in-
teraction between the sites at the island boundaries. If this
interaction is long range, it can affect the dynamics of large
islands and, in principle, provide a mechanism for a first
order wetting transition. In this paper we consider a gener-
alization of the contact process where the activation rate of
sites at the boundary of an inactive domain decays algebra-
ically with the domain length. In particular, the activation
rate for an island of length, is assumed to take the form
ls1+a/,sd, wherel, s, anda are positive constants. We find
that, depending on the powers, the model exhibits either a
continuous DP-likesfor s.1d or a first-ordersfor s,1d
transition. We then examine the possible emergence of such

effective long range interactions in wetting models. Numeri-
cal determination of the powers of the effective interaction
thus allows inferring the order of the phase transition also in
these models.

The paper is organized as follows: In Sec. II we introduce
a generalized contact process in 1+1 dimensions that in-
cludes an activation rate which decays algebraically with the
size of inactive domains. The mean-field solution of the
model predicts a first-order transition, when the interaction
decays slowly enough with the inactive domain size, while
faster decay rates yield a DP behavior. In Sec. III we present
the results of detailed numerical simulations, which are in a
very good agreement with the mean field predictions. The
bridge between this generalized contact process and wetting
models is discussed in Sec. IV. There we consider two mod-
els, which have been introduced previously for studying non-
equilibrium wetting. The first is a solid-on-solid model
f2–4g, whose phase diagram contains a line of wetting tran-
sitions. While the first order nature of the transition has
clearly been established in a part of the phase diagram, the
nature of the transition in another region proved to be more
difficult to analyze. Our numerical study seems to suggest
that inside the latter region, upon changing a suitable control
parameter, the effective activation rate at the boundary of
inactive domains can exhibit both a fastss.1d and a slow
ss,1d power law decay. However further analysis based on
scaling arguments shows that the slow decay of the effective
activation ratesand thus the first order behaviord is only a
finite-size effect, albeit particularly robust. This result sug-
gests that in this entire region the transition is asymptotically
continuous and of DP nature. We then analyze a second wet-
ting modelssingle-step-with-walld f8g, where previous stud-
ies have indicated a continuous DP-like wetting transition for
strong attractive interaction between the substrate and the
interface. We provide numerical evidence that the effective
activation rate governing the dynamics of inactive islands
corresponds to the cases.1. This is indeed consistent with
the DP nature of the transition. The main results are summa-
rized in Sec. V, which contains also some remarks and com-
ments on future perspectives.

II. A CONTACT PROCESS WITH LONG RANGE
INTERACTIONS

In this section we introduce a lattice model of a contact
process in 1+1 dimensions with long range interactions
which shows a crossover between a continuous DP and a
first-order phase transition. We consider a periodic lattice of
length L, where the state variableSi at site i is either “ac-
tive,” Si =1, or “inactive,” Si =0. The dynamics evolves by
random-sequential updates, i.e., at each time step a lattice
site i is chosen at random. If the selected site is either active
or next neighbor of an active site, it is updated according to
the following rules

1 → 0 with rate 1, s1d

0,1 f10,g → 0,−111 f110,−1g with rate l̄s,d = ls1 + a/,sd,

where 0, is a shorthand notation for an inactive island of size
,. Finally, as for usual contact processes, inactive sites that
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are not adjacent to active ones cannot be activated, thus guar-
anteeing that the inactive state is absorbing. The constantsl
anda are both non-negative: the casea=0 corresponds to the
usual short range contact process, which exhibits a DP tran-
sition atlc=1.64892s8d f17g. For a.0 the power law decay
with , of the shrinking rate of inactive islands introduces
effective long-range interactions. Within the mean field ap-
proximation one finds that the transition is continuous for
s.1 but becomes first order for 0,s,1. To demonstrate
this point let rstd be the average density of active sites at
time t. In the thermodynamic limit,L→`, the mean field
dynamics ofr reads

dr

dt
= − r + lr2o

,=1

` S1 +
a

,sDs1 − rd,

= sl − 1dr − lr2 + lar2o
,=1

`
s1 − rd,

,s . s2d

For s.1 the sum on the right-hand sidesRHSd of Eq. s2d is
finite in the limit r→0 and its contribution amounts to a
renormalization of the coefficient of ther2 term. Accord-
ingly, the mean field equation describes a standard DP pro-
cess with short range interaction, thus recovering, for suffi-
ciently small values ofa, the continuous nature of the phase
transition. For largea, the coefficient of ther2 term becomes
positive and the mean-field approximation predicts a first-
order transition. However, studies of similar models indicate
that the mean-field prediction of first-order phase transitions
associated with the change of sign of ther2 term is unreli-
able f18g.

For 0,s,1, the leading contribution arising from the
sum in the rightmost side of Eq.s2d can be captured by
replacing it with an integral overd,,

]tr = sl − 1dr − lr2 + lar2E
0

` s1 − rd,

,s d,, s3d

which, to leading order inr, reduces to

]tr = sl − 1dr + alGs1 − sdr1+s − lr2. s4d

HereGsxd is the standard Gamma function. The leading non-
linear term in this equation involves a noninteger power, as a
consequence of the long range nature of the interactions.
Since its coefficient is positive, Eq.s4d cannot admit fixed
point solutions for arbitrarily small densities, so that the tran-
sition to the absorbing state is first order. This result is ex-
pected to hold even fors=1, where the leading singular term
in the equation is −r2 ln r.

III. NUMERICAL RESULTS

The mean field calculation, that is expected to hold above
the upper critical dimension of directed percolationdc=4,
indicates that fors.1 the transition is second order with the
critical exponents of DP, while forsø1 it turns into a first-
order transition. The crossover from a continuous to a dis-
continuous transition is therefore predicted to take place at
sc=1. In what follows we investigate the validity of this

prediction by simulating the generalized contact process de-
fined in Eq.s1d. In order to obtain independent checks, we
performed two different kinds of numerical analyses, i.e.,
measuring the scaling properties of suitable observables
starting fromsid a fully active state andsii d a single active
site sepidemic spreadingd. Although we do not expect the
overall scenario to depend on the parametera fsee Eq.s1dg,
the accuracy of the numerical simulations actually does de-
pend. For smalla, discontinuities in the order parameter are
correspondingly small, while for largea, it is necessary to
consider very large lattice sizes to reach the asymptotic-
scaling regime. All the numerical results reported in this pa-
per have been obtained fora=2, which represents a good
compromise. We findsc=1.0±0.1, which suggests that the
mean-field analysis is quite accurate even in 1+1 dimen-
sions. However, we cannot exclude the possibility that the
precise threshold value in such a low dimensional case
slightly deviates from 1. This has already been observed in
directed percolation with long-range infections through Levy
flights, where a small deviation from the mean-field predic-
tion was found for the critical value of the control parameter
si.e., the exponent of the Levy distributiond f19,20g.

A. Analysis of the stationary active state

We first discuss the evolution of Monte Carlo simulations
that start from a fully active state. In order to distinguish
between first-order and second-order transitions we deter-
mine the density of active sites and the size distribution of
inactive islands. Let us first summarize the expected results
for each of the two quantities. Since the continuous transition
should be DP, the average density of active sites,rstd, mea-
sured at criticality, should decay as

rstd , t−u. s5d

On the other hand, off-criticality, in the active phase of an
infinite system, rstd saturates to a stationary valuekrlt

swherek·lt denotes time averaged, which scales with the dis-
tance from the critical pointlc as

krlt , ul − lcub, s6d

whereb=0.276486s8d f21g. These two critical exponents are
connected by the so-called temporal exponentni, so thatu
=b /ni=0.159464s6d f21g.

Moreover, in DP the size distributionPs,d of inactive
islands decays algebraically as

Ps,d , ,−s2−b/n'd s7d

with a cutoff at the spatial correlation lengthj',ul
−lcu−n', where the exponent 2−b /n'=−1.747. . . follows
from k,l,1/r,j'

b/n'. In fact, the average length of inactive
islands

k,l =E
0

`

Ps,d, d, s8d

diverges at criticality due to scale invariance, so thatPs,d
,,−a with 1,a,2 for ,&j'. Since the average size of
inactive islands is proportional to the inverse of the density
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of active sites, one has 1/r,k,l,j'
b/n', which impliesa

=2−b /n'=1.747. . .f22–24g.
Conversely, for a first-order phase transitionrstd is not

expected to exhibit any critical behavior associated with a
diverging correlation length at the transition point. Instead,
the saturated order parameterkrlt exhibits a discontinuity at
the transition. Since in this case the active phase cannot dis-
play any coarsening properties, the average lengths8d of in-
active islands should be finite, i.e.,Ps,d should decayfaster
than 1/,2. As no hysteretic behavior can be observed in non-
equilibrium processes with an absorbing state, the distribu-
tion Ps,d turns out to be the most effective indicator of a
first-order transition.

In order to reduce as much as possible finite-size effects,
we considered very large systems of sizeL=219 with peri-
odic boundary conditionssadditionally we have also aver-
aged over a few different realizationsd. The best estimates of
the critical pointlc

f , are reported in the first row of Table I.
For s=1.1 ands=1.5 we identified a critical scaling region
ssee Fig. 2d, where both the exponentsd andb are in agree-
ment with the best numerical estimates for DP in 1+1 di-
mensions. Moreover, we computedPs,d in the active phase
close to the critical point by sampling spatial configurations
at periodic time intervals and counting all the inactive re-
gions of size,. As shown in Fig. 3,Ps,d is characterized by
a power law decay slower than 1/,2 sprior to the unavoid-
able exponential cutoff due to finite-size effectsd, consis-

tently with the prediction for DPfsee Eq.s7dg.
On the other hand, belows=1 a scaling region at the

transition point could not be identified. The saturated density
of active siteskrlt shows a finite discontinuity andPs,d de-
cays faster than 1/,2 ssee Fig. 3d. Accordingly, this analysis
provides evidence that the transition is discontinuous.

B. Spreading from a single seed

A further verification of the mean-field analysis has been
obtained by simulating models1d, starting from a single ac-
tive site at the originf25g. In this type of simulations, the
relevant variables are the survival probabilityPsstd, the num-
berNstd of active sitessaveraged over all runsd and the mean
square spreadingR2std of the active region. At the critical
point of a phase transition towards an absorbing state, these
quantities are known to scale as

Psstd , t−d, Nstd , th, R2std , t2/z. s9d

In the special case of a DP phase transition, the exponents
d ,h ,z can be expressed in terms of the standard exponents
b ,n' ,ni as f26g

d = u = b/ni, h = sdn' − 2bd/ni, z= ni/n'. s10d

Their actual values are reported in the first line of Table
II. A scaling behavior of the type described by Eq.s9d is

TABLE I. Estimates of the critical points fora=2. They have been obtained starting from a fully active
initial state slc

fd and by spreading analysis of localized initial conditionsslc
l d. Finite size corrections are

responsible for the small differences.

s 0.5 0.8 0.9 1.1 1.2 1.5

lc
f 1.2850s5d 1.3650s5d 1.4091s1d 1.4708s3d

lc
l 1.2870s4d 1.3395s3d 1.3635s5d 1.4093s3d 1.4280s5d 1.4711s3d

FIG. 2. Power law critical behavior of the generalized contact
processs1d for s=1.1 ands=1.5, compared to the expected DP
behaviorsdashed linesd: sad decay in time of the density of active
sitesrstd; sbd stationary density of active sites as a function of the
distance from criticality. Circles correspond to the cases=1.5,
while squares tos=1.1. Both graphs are plotted in a doubly loga-
rithmic scale.

FIG. 3. Doubly logarithmic graph of thesun-normalizedd size
distributions of inactive islandsPs,d as a function of size,. From
top to bottom the solid lines correspond tos=1.5, s=1.1, s=0.9,
and s=0.5. The dot-dashed line marks the power-law decay ex-
pected in the case of a DP phase transition. The long dashed line
decays as 1/,2, discriminating in 1+1 dimensions between first
order and continuous phase transitions.
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expected to arise also in systems exhibiting a first-order tran-
sition in 1+1 dimensionsf18g, although the relations be-
tween spreading and stationary exponents assume a more
general form than Eq.s10d f9g. In these cases, the critical
dynamics follows from the marginal relative stability of two
coexisting phases:sid the absorbing state itself andsii d a
phase characterized by a suitable finite density of active sites.
For instance, an active site evolves into a droplet of phase
sii d embedded into a sea of phasesid. At criticality, the
boundary, having no preferential velocity, diffuses like an
unbiased random walk. A clear example of such a type is the
one-dimensional Glauber-Ising model at zero temperature,
where the density of active sites in phasesii d is maximal, i.e.,
equal to 1. In models such as Eq.s1d, the natural existence of
small inactive islandsssee Fig. 4d can seemingly make the
separation into two phases questionable. However, for suffi-
ciently smalls values, the long-range interactions are strong
enough to suppress the formation of large inactive islands. In
these circumstances, one would expect the long-term dynam-
ics to be controlled by the evolution of the boundaries. In
particular, the scaling exponents of contact processes exhib-
iting a first-order phase transition in 1+1 dimensions are
expected to be the same as in the Glauber-Ising model at
zero temperature, whose values are reported in the second
line of Table II. Notice thath=0 means that the density
remains finite at criticality.

Numerical simulations of the spreading dynamics confirm
our expectations. Independently of the results discussed in
the previous section, we have first estimatedlc by measuring
the average number of active sitesNstd for different values of
l and then looking for the value of the control parameter that
minimized the curvature ofNstd at long timesssee Fig. 5d.
By performing simulations up totmax=33106 Monte Carlo
sweepssMCsd and by averaging over 105 realizations, we
have obtained fairly accurate estimates, which are listed in
the second row of Table I. The differences with the values
reported in the first row provide an indirect estimate of the
magnitude of finite-size corrections.

We have also investigated the asymptotic behavior of
Psstd andNstd at criticality ssee Fig. 6d. For large times, both
quantities exhibit a power-law behavior: fors.1 ss,1d the
growth rates are consistent with a DP transitionsGlauber-
Ising dynamicsd. As expected, the closer iss to 1, the longer
is the time needed to reach the scaling regime.

In conclusion, our simulations indicate that the crossover
from a continuous to a discontinuous transition takes place in
our model betweens=0.9 ands=1.1. This result is consis-
tent with the predictions of the mean field arguments dis-
cussed in Sec. II. For the sake of completeness, we mention
the results of simulations made in the marginal cases=1. In
such a case, there are indications of a still first-order transi-
tion, although the Glauber-Ising exponents are not yet recov-
ered on the accessible time scales.

IV. NONEQUILIBRIUM WETTING AS A CONTACT
PROCESS WITH LONG RANGE INTERACTIONS

In this section we investigate to what extent the behavior
of nonequilibrium wetting processes can be interpreted as a
contact process with long-range interactions of the forms1d
and whether the previous results can be used as a criterion
for distinguishing first-order from DP-like continuous transi-
tions. To this end we consider two previously introduced
wetting models, studying them within the above derived
framework. In practice, we numerically estimate the effec-
tive activation rates at the boundary of detached islands and
show that they are indeed of the forms1d. The results ob-
tained in the previous section can help to discern the nature
of the wetting transition in the two models.

A. Restricted solid-on-solid wetting model

The first system we consider is a restricted solid-on-solid
sRSOSd modelf2–4g. It is defined on a one-dimensional lat-

FIG. 4. Typical cluster grown from a single seed fors=0.5 at
criticality, simulated up to 5000 Monte Carlo sweeps. Notice that
large inactive islands are suppressed and the growing cluster can be
regarded as effectively compact.

TABLE II. Exponents in seed simulations for DP and zero-
temperature Glauber dynamics in 1+1 dimensions.

d h z

DP 0.159464s6d 0.313686s8d 1.580745s10d
Glauber 1/2 0 2

FIG. 5. Time evolution of the average number of active sites
close to the phase transition. In the left panel the average number of
active sitesNstd is plotted as a function of time fora=2, s
=0.5,0.8,0.9 and for different values ofl, close tolc. All curves
indicate thatNstd converges to a constant after a transient time
which increases withs. In the right panel the time-rescaled number
of active sitesNstdt−h swith h=0.313686d is shown fora=2, s
=1.1,1.2,1.5, and for different values ofl, close tolc. In order to
avoid a messy overlap, the curves have been shifted vertically by an
arbitrary value. Their asymptotic behavior indicates good agree-
ment with the expected DP critical scaling. The estimates oflc are
reported in Table I. Both graphs are plotted in a doubly logarithmic
scale.
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tice with periodic boundary conditions: at each lattice sitei
the height variablehi can take any nonnegative integer value
such thatuhi −hi+1u=0,1. Ahard attractive substrate is located
at zero height preventinghi from becoming negative. The
interface evolves by random sequential updates controlled by
three real parametersq, q0 and p. At each move, a sitei is
randomly selected and, provided the above constraints are
fulfilled, one of the following three processes is carried out
ssee Ref.f4gd.

Particles are deposited with rateq0 at the bottom layer and
with rateq at higher layers.

Particles evaporate from the edges of a terrace with rate 1.
Particles evaporate from the middle of a plateau with rate

p.
The phase diagram of the model is shown in Fig. 7. Ifq0

is large enoughse.g., q0<qd, the model exhibits a line of
continuous phase transitions, which belongs to the MN uni-
versality class. Its critical behavior can be described by a
Kardar-Parisi-ZhangsKPZd equationf27g in a potentialVshd
representing the interaction between the interface and the
substrate

ḣ = D¹2h + ns¹hd2 −
]V

]h
+ z. s11d

Here h;hsx,td indicates the height of the interface on the
substrate, whilez;zsx,td is the noise termd-correlated in
space and time,kzsx,tdzsx8 ,t8dl,dsx−x8ddst− t8d. The coef-
ficient n of the nonlinear term is positive forp.1 and nega-
tive for p,1. Detailed balance holds only forp=1. This
special case can be solved exactlyf28g: its critical properties
are described by an Edwards-WilkinsonsEWd equationf29g
sn=0d equipped with the interface-substrate interaction po-
tential.

Decreasingq0 amounts to increasing the attractive inter-
action between interface and substrate. It has been observed
that, below a certain threshold, the continuous transition may
turn into a discontinuous onef3g. For instance, atp=1 it was
shown analytically that forq0,2/3 the transition becomes
first order, while the transition point remains located atq
=1. Numerical simulations provide very clear evidence that
this scenario extends to the nonequilibrium casep.1: the
phase-transition line is still independent ofq0 ssee Fig. 7d,
while for q0 smaller than a threshold valueq0

*spd, the transi-
tion becomes first order. In this case, the interface dynamics
is quite different from the one described by our model. In
fact, direct inspection of the interface dynamics in the active
phase close to criticality shows that there is a non-negligible
probability for the interface to return in contact with the sub-
strate not only at the domain boundaries of inactive domains,
but also inside these domains. In DP jargon, this amounts to
saying that an inactive site may become active even without
being in contact with an active site. This excludes any direct
relation with the model of a generalized contact process with
long-range interactions introduced in Sec. II.

Conversely, for 0,p,1, the dynamics appears to be
strongly related to that of our model. For sufficiently small
q0 fi.e., q0 smaller then a thresholdq0

*spdg, a region in the
sp,qd plane arises, where the pinned and the unbound phases
coexistfsee Fig. 7sbdg. In this region, an unbound interface
moves away from the substrate and never binds back. On the
other hand, a bound interface remains bound for macroscopi-
cally long times and, in the thermodynamic limit, will never
detach from the substrate. Only if the growth rateq is in-
creased beyond a new critical value, a depinning transition

FIG. 6. The survival probabilityPsstd sleft
paneld and the average number of active sites
Nstd sright paneld at criticality for s
=0.5,0.8,0.9,1.1,1.2,1.5sshown from bottom to
topd in a doubly logarithmic representation. The
predicted asymptotic slopes of directed percola-
tion sDPd and Glauber-IsingsGId are indicated as
bold lines.

FIG. 7. Phase diagram of the RSOS model forq0.q0
*spd sleft

paneld andq0,q0
*spd sright paneld. The phase transition takes place

along the full line, while the dashed line in the right panel marks the
lower border of the phase-coexistence regionssee textd.
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takes place at the upper border line of the phase-coexistence
region fsee Fig. 7sbdg. It is the nature of this transition that
we want to investigate here.

As explained inf3,4g, the stability of the pinnedsactived
phase in the coexistence region is ensured by the negative
sign of the nonlinear coefficientn: when a large detached
island forms, it grows quickly, acquiring a triangular shape
with a given slope and eventually shrinks from the edges
with constant velocity. Because of the triangular shape of the
interface, the probability of returning to the substrate at some
point far from the edges of the island is exponentially sup-
pressed. Therefore, it is reasonable to conjecture that forp
,1 the model belongs to the class of contact processes.

Numerical simulations of the RSOS model dynamicssnot
shown hered seem to indicate that also in this case the depin-
ning transition may become discontinuous forq0,q0

*spd. For
p=0 and, correspondingly,q0,q0

*s0d<0.399, we know that
it is of DP typef3g. On the other hand, the DP scaling regime
becomes transparent only after a transient time that, forq0
=0.35 is on the order of 104 units. Although the crossover
becomes practically unobservable for yet smallerq0 values,
there are compelling reasons to believe that this regime is
eventually attainedf3g.

In order to shed some light about the order of the transi-
tion for 0,p,1, we have tested whether effective long-
range effects spontaneously emerge as a result of the RSOS
microscopic dynamics. In practice, we have measured the

effective activation ratel̄s,d=Nas,d /Nbs,d at the border of
depinned islands of size, sNbs,d is the number of times a
depinned site at the border of an inactive island of size, has
been selected in the stationary regime andNas,d is the num-
ber of times the selected site is immediately pinnedd. Data
has been obtained by averaging over time, space and differ-
ent realizationsstypically, 100d for large latticessL=105d and
close to the transition line.

We have first analyzed the nature of the transition close
to p=0. In Fig. 8 we display the results obtained at the
transition points T0=sp=0,q0=0.2,q=0.755d and T1=sp
=0.01,q0=0.2,q=0.76d. The activation ratel̄s,d is re-

ported after subtracting its estimated asymptotic valuel̄`

=lim,→`l̄s,d. In both cases, it is found that it converges

towardsl̄` faster than 1/,, although no precise estimate of
the scaling rate can be obtained. Altogether, these results
suggest that DP critical properties persist also for small val-
ues ofp and q0,q0

*spd. On the other hand, forp=0.2 and
q0,q0

*s0.2d=0.515. . . our findings are suggestive of a first-
order phase transitionsand thus, in agreement with previous
findingsf3gd. In fact, from Fig. 9, we see that in both points
T2=sp=0.2,q0=0.4,q=0.70d, and T3=sp=0.2,q0=0.3,
q=0.745d the activation rate is found to converge slower
than 1/,, although the actual value of the exponents,1
appears to depend on the parameter. According to the crite-
rion introduced in Sec. II, these results are therefore compat-
ible with a discontinuous phase transition.

As a result, we can attribute the seemingly first-order na-
ture of the transition to the existence of effective long-range
interactions. Nevertheless, it remains to be proved whether
the slow dependence of the activation rate on the window

size is just a finite-size effect or holds fot arbitrarily large
distances. Here below we present an argument supporting the
former hypothesis.

In order to clarify this point we move progressively away
from the equilibrium case. Forp=1, it is known that the
transition is discontinuousf4g sfor small enoughq0d and that
the dynamics of the free interface is asymptotically described
by the EW equation. Whenp is lowered below 1, the only
relevant difference that is expected to occur is a crossover in
the free interface dynamics from and EW to a KPZ regime
above some critical length,c f32,33g. It is thus natural to
conjecture that as long as the dynamics of the bound inter-

FIG. 8. RSOS model—decay of the activation ratessee textd as
a function of size of depinned islands. Numerical simulation have
been performed close to the special pointp=0. Circles refer toT0

=sp=0,q0=0.2,q=0.755d, while squares to T1=sp=0.01,q0

=0.2,q=0.76d. The graph is plotted in a doubly logarithmic scale.
For the sake of clarity the data are shifted vertically by an arbitrary
value.

FIG. 9. RSOS model—decay of the activation ratessee textd as
a function of size of depinned islands. Numerical simulation have
been performed at the critical pointsT2=sp=0,q0=0.4,q=0.70d
ssquaresd andT3=sp=0.2,q0=0.3,q=0.745d scirclesd. The graph is
plotted in a doubly logarithmic scale. Data atp=0.3 show a power
law decay with an exponents=0.69s2d, while q0=0.4 data decays
with an exponents=0.89s2d.
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face remains insensitive to such differences, the scenario
should not change. Here below we argue that this occurs for
system sizes smaller than some lengthLc that can be ex-
tremely large.

The best way to characterize the above mentioned cross-
over is by monitoring the widthwstd=(Šsh−khld2

‹)1/2 of an
initially flat sand freed KPZ interface. In fact, after an initial
growth ast1/4 sin agreement with EW equationd, at some
time tc, wstd crosses over towards a behavior of the typet1/3

and eventually saturates because of the finite length of the
system. In other words, for times smaller thantc the interface
behaves in the same way as in an equilibrium regime. Since
the stationary profile of an interface is a diffusive random
walk, one can safely assume that

w` = lim
t→`

wstd = kÎL, s12d

whereL is the interface length. By extending the above re-
lation to finite times, one can interpret it as the definition of
the effective scaleLstd that is resolved at timet. For instance,
,c=(wstcd /k)2 is the minimal length of a free interface that
allows observing a crossover to the KPZ scaling behavior.

Within the context of a bounded interface, this implies
that deviations from equilibrium are observable only in those
depinned islands of length,.,c. Accordingly, the problem
of determining the minimal length to observe deviations
from the equilibrium scenario amounts to estimating the
probability for a suitably large depinned islands to arise. At
equilibrium, the theoretical analysis developed inf4g has re-
vealed that when the transition is discontinuoussthe scenario
we are interested ind, the interface is exponentially localized
at the substrate, i.e., the probability to find large values of the
heighth scales asPshd.exps−h/h0d. It is quite plausible to
assume, and we have indeed numerically verified, that as
long as deviations from equilibrium are not detectable, the
exponential decay survives also forp,1. Since we have also
seen that depinned islands have an approximately triangular
shape, this means that also island lengths are exponentially
distributed Ps,d.exps−, /,0d, where ,0 is proportional to
h0, the proportionality constant being related to the slope of
such islands.

As a result, the probability that at least a given island
reaches the size,c is proportional to exps−,c/,0d. In a large
but finite system of sizeL, this may happen independently at
different places. Hence the first large island would appear in
a typical time t.,c/L exps,c/,0d. Accordingly, the mini-
mum system size guaranteeing that such islands are observed
with nonnegligible probability and dominate the wetting dy-
namics is

Lc = ,c exps,c/,0d. s13d

Therefore, as long as theseffectived size remains smaller
than Lc, a seemingly first-order transition is observed. Be-
yondLc, in the fully nonlinear regime, several theoretical and
numerical studies of different modelsf8,14g suggest that a
DP behavior sets in. As a result, we expect in particular that
the distribution of depinned islands crosses over from an
exponential to a power-law distribution. However, given the
exponential dependence ofLc on ,c, it may happen that the

crossover length is so large that the asymptotic regime is
practically unobservable. Note also thatLc diverges exponen-
tially as p→1, thus approaching the equilibrium point.

Numerical simulations performed at the transition point
T1=sp=0.01,q=0.76,q0=0.2d indicate thatk=0.179s1d and
wstcd=2.9s2d, yielding the estimate,c<260. On the other
hand, direct computations of the island sizes indicate that
,0,Os102d, yielding Lc<3.53103 and altogether confirm-
ing that the crossover towards DP can be observed, as we
actually do. Moreover, at the transition pointT2=sp=0.2,
q=0.70,q0=0.4d, we find k=0.204s1d and wstcd=5.7s2d,
while ,0 is almost unchanged, yielding the estimateslc
<780 andLc<23106. Consistently, no indication of the
crossover has been observed up to times on the orderOs106d
and system sizes of lengthOs105d.

B. Single-step-with-wall model

The second model we have tested is the so-called “single-
step-with-wall” sSSWd model f8g, a variant of the well
known single-step model introduced in Refs.f30,31g. Here,
the growing interface is described by a set of integer heights
hi at site i of a one-dimensional lattice of lengthL with
periodic boundary conditions. In this model, the “continuity”
restriction uhi −hi+1u=1 plays the role the RSOS constraint.
An upward-moving wall is located at some integer height
hwstd, below the interface. It moves with velocityvw, thus
pushing the interface which cannot be overtaken by the wall.
Moreover, in analogy with the RSOS model, the interface is
also attracted by the wall. The model evolves by random-
sequential dynamics, i.e., at each time stepdt=1/L, a sitei is
chosen at random. If the interface has a local minimum at
site i snamely hi ,hi±1d, the heighthi is increased by two
units with probability 1 if hi .hw, or with probability s1
−qd whenever the interface is pinned to the wallshi =hwd.
Since 0,q,1, an effective attractive force is introduced
between the wall and the interface. Afternw=L /vw time
steps, the wall is moved upward by one unit, while the height
of all interfacial sites that would be overtaken by the wall is
increased by two unitsse.g., see Fig. 10d. On the basis of
these microscopic update rules, one can easily infer that the

FIG. 10. Updating rule of the SSW model. The full line repre-
sents the interface, while the shaded area represents the wall.
Dashed segments indicate interface growth occurring in randomly
chosen local minimassee A and B in upper paneld and in all sites
located below the wall after it has been shifted upwards by one.
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velocity of the free interface is 1/2 in the thermodynamic
limit.

The phase diagram of the SSW model is controlled by
two parameters:vw−1/2, i.e., the relative velocity of the
wall to the free interface, andq, i.e., the “stickiness” of the
wall. By decreasingvw, a phase transition from a pinned to a
depinned phase is observed. Numerical analysis and analyti-
cal argumentsf8g show that whenq,q* =0.444. . . such a
transition takes place atvw

c =1/2, i.e., when the relative ve-
locity of the wall with respect to the free-interface changes
its sign. The transition in this part of the phase diagram is
continuous and belongs to the MN universality class. Forq
.q* the effective attractive force binds the interface to the
wall and a continuous DP phase transition takes place at a
critical valuevw

c sqd,1/2.
In order to estimate the role of long range interactions in

the critical dynamics of the SSW model, we have measured

also in this case the effective activation ratel̄s,d. Since the
time interval 1/vw between two consecutive wall moves can
be regarded as the natural time scale of the SSW model, we
measured the pinning rate at timetm=m/vw sm=1,2, . . .d for
an initially depinned site located at the border of a depinned
island of size, at time tm−1. Averages have been taken over
time, space and different ensemble realizationsstypically
100d for large enough systemssL=105d close to the DP criti-
cal line, atq=0.7 andq=0.8. Our results are shown in Fig.

11, where numerical data has been fitted withl̄s,d=ls1
+a/,sd. There is evidence thatl̄s,d decays to a constant
faster than 1/, with exponentss=1.20s5d sfor q=0.7d and
s=1.30s5d sq=0.8d. According to our predictions based on
the behavior of the generalized contact process, this implies
a continuous DP transition, which indeed has been observed
in Ref. f8g.

Unlike the RSOS model discussed in the previous section,
here in the SSW model the DP behavior is observed at small

length scales, and is thus accessible in numerical studies of
finite systems. The reason is that the SSW model is designed
in a way that the nonlinearity is maximalf32g, and hence the
crossover length,c is fixed and of order 1. On the other
hand, in the RSOS model the nonlinearity depends on the
growth parameterp, with a diverging crossover length asp
→1.

V. CONCLUSIONS

In this work we examined a possible connection between
wetting phenomena and contact processes. Inspired by the
puzzling richness of the phase diagrams found in various
models, we introduced a generalized contact process with the
goal of capturing both the DP and first-order transitions ob-
served in one-dimensional nonequilibrium wetting transi-
tions occurring at nonzero interface velocity. The element of
novelty distinguishing our model from standard contact pro-
cesses consists in an algebraic dependence of the activation
rate on the length, of the depinned island containing the

inactive sitel̄s,d.ls1+a/,sd.
A mean-field analysis predicts that whens.1, the model

exhibits a continuous phase transition characterized by DP
critical exponents. In other words, the algebraic decay of the
interactions is not so long-range as to alter DP critical prop-
erties. Conversely, for 0,s,1 the phase transition turns to
a first-order one. Numerical simulations confirm the mean-
field predictions, which are found to provide also an accurate
estimate for the critical valuesc, separating the two different
regimes:sc=1.0±0.1, from numerics. By directly measuring

the effective activation ratel̄s,d in nonequilibrium wetting
processes, one can use the estimate of the exponents as a
practical tool for probing the nature of a wetting transition.

To apply the insight gained from the DP process to wet-
ting phenomena, we considered in this paper two wetting
models, RSOS and SSWssee Sec. IVd. Previous numerical
studies of the latter modelf8g indicate that for a sufficiently
strong attractive force of the substrateswalld, the wetting
transition is DP. Our criterion confirms these results, since
the effective activation rate is indeed found to converge
faster than 1/, to its asymptotic value. The phase diagram of
the RSOS model on the other hand is known to be more
complicated, since it contains both first order and continuous
wetting transitionsf3g. Our analysis suggests that forp,1
the entire phase-transition line located at the upper border of
the coexistence region should asymptotically belong to the
DP universality class. However, the finite-size behavior de-
pends on two length scales:sid the crossover,c between EW
and KPZ roughening behavior;sii d the effective size,0 of
depinned islands. As long as the system size is smaller then
Lc=,c exps,c/,0d and islands of size larger than,c are not
significatively generated, numerical simulations can only
provide evidence of a first-order transition. A qualitative
phase diagram for the RSOS model in the caseq0,q0

*spd is
sketched in Fig. 12.

It is interesting to compare our results with those recently
obtained for the KPZ equation with an attracting hard core

potentialf14g: ḣ=D¹2h+ns¹hd2−V8shd+z. Although the au-

FIG. 11. SSW model—Double logarithmic plot of the activation

ratel̄s,d as a function of the size, of depinned islands. Numerical
simulations have been performed at criticality: circles correspond to
q=0.7, vw=0.4297 while squares toq=0.8, vw=0.3489. Dashed
lines mark our best fits with Eq.s1d, rendering respectively the
estimatess=1.20s5d ands=1.30s5d.
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thors do not exclude the possibility that the entire transition
line belongs to the DP universality class, their numerical
analysis revealed both a first order and a DP wetting transi-
tion. In particular, DP critical behavior has been observed
upon decreasing the attractive force and reducing by a factor
ten both the diffusion sDd and the nonlinearsnd term with
respect to the parameter values corresponding to a first-order
phase transition. While decreasing the attractive force is ob-
viously expected to increase the “cutoff” scale,0, the latter
change decreases the length scale,c by the same factor ten.
The crossover length from EW to KPZ roughening is in fact
known to scale asD3/ sn2Gd f33g, whereG is the amplitude of
the Gaussian white noisez. This indeed suggests that the DP

sfirst-orderd behavior has been observed in a parameter range
where the crossover scaleLc fas defined by Eq.s13dg is nu-
merically accessiblesunaccessibled, as suggested in the
present study. This work helps to better understand the part
of the wetting phase diagram characterized by a negative
coefficient of the KPZ nonlinearity, which is precisely the
part related with the complete synchronization transitionsin
the case of an MN phase transition, this relation can be made
explicit by use of the Cole-Hopf transformationf34gd. In
particular our analysis indicates that the dynamical details of
the system may induce a seemingly first order phase transi-
tion which lasts over exponentially long time and space
scales, effectively suppressing DP critical properties.

Finally, we wish to comment about the transition line for
p.1 swhere the coefficient of the KPZ nonlinearity is posi-
tived. For q0,q0

*spd, the transition is known to be first order,
but it occurs when the interface velocity changes signf3g,
i.e., there is no region of phase coexistence. Accordingly,
depinned islands are no longer characterized by a triangular
shape and interface fluctuations may easily give rise to the
pinning of inactive sites far away from the active ones; in
other words, the analogy with contact process is seemingly
lost. It would be interesting to investigate whether the inclu-
sion of some sort of “spontaneous” nucleation of active sites
can eventually account for the scenario observed forp.1. A
further open problem is the crossover from the DP to the MN
universality class, which takes place in both RSOS and SSW
models. The study of this crossover would require the inclu-
sion of nucleation of active sites in the interior of inactive
domains. An appropriate generalization of the DP model in-
cluding such processes could yield useful insight onto the
crossover phenomena taking place in nonequilibrium wet-
ting.
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